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ABSTRACT

A mathematical framework is described which allows the logical joining of the processes of condensation,
collection and advection, and also freezing and electrical effects in a cloud model.

1. Introduction

Cloud models developed by several investigators treat
separately and sometimes jointly the processes of con-
densation, collection, advection, freezing and melting.
Problems will usually arise when these processes are
joined into a more comprehensive cloud model, espe-
cially if the separate parts have been developed by differ-
ent individuals. The structure described here is one
method by which we can “talk the same language.”
Problems in the composition of cloud models should
thereby be reduced.

Since the purpose of this framework is to be general,
the equations will be general, but this does not preclude
the individual simplification of any of the structural
parts. Also, one can reduce the droplet density function
to two or three ‘““classes” of cloud particles, The general
structure remains unchanged.

Since the general equation is interesting in itself, we
shall finish with a few digressions into its nature.

2. General description

We use the term particle to mean any type of hydro-
meteor and distinguish a hydrometeor by its mass, its
type and its position. The type of hydrometeor is re-
corded by its internal parameters which can isolate its
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Fi1c. 1. The orthogonal coordinates of f space.

nucleus mass, its electric charge, its phase and crystal
type, etc.

Rather than attempt to record each particle indi-
vidually, we record the presence of particles of different
size and internal parameters by a density function over
particle size, internal parameters and spatial position.

To complete the formulation, we need to specify those
parameters of the environment which affect the rates of
change of mass, type or position of the particles. The
particles in turn affect their local environment through
the exchange of water mass, heat, etc. A set of interface
equations must be written.

3. The particle density function

The parameters which describe a particle, and which
will be looked upon as orthogonal coordinates in f space,
are x=mass, y=y;=Iinternal parameters, and Z=physi-
cal location, with components 2,23,2;. The particle
density function f is then defined such that

J(,y,2) AvAyAZ = An(2,3,Z) €Y

is the number of particles (or, if less than one, the proba-
bility of their existence) in the volume element AxAyAZ
of f space at time ¢ (Fig. 1).

Time ¢ is the independent parameter of f, but is not
one of the coordinates of f space, and so is not expli-
citly written in (1). The internal parameter y is here
written as one coordinate for convenience. The generali-
zation to more dimensions will be obvious.

The external conditions affecting the growth rate will
appear, in the case of condensation, in an auxiliary equa-
tion relating & to %, v, Z, and the environment. In the
case of collection, the environmental effect will enter
through the kernel of the integral equations which de-
scribe the collection process.

Each particle is represented by a point in f space, i.e.,
there is a one-to-one correspondence of points in f space
and particles in the cloud.

The points in f space are free to move. This motion we
call “drifting” (Fig. 2).
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F1G. 2. Motion of a point in f space, called “drifting.”

A point moving in the Z direction represents the
motion of the corresponding particle in physical space.
If the point moves in the « direction it indicates that
the particle is gaining mass by condensation of vapor.
Motion of the point in the y direction indicates that the
internal parameter is changing while mass and position
remain constant.

The number of points in a small volume of f space
may change with time in three ways, i.e., by drifting,
by extinction (that is, just disappearing), and by crea-
tion (appearing).

Extinction of a point occurs when its particle has
collided and coalesced with another. The point disap-
pears because that particle (that is, the particle of that
size and at that Z) ceases to exist. Simultaneously, a
new point appears in another position in f space which
represents the formation of a new particle having the
sums of the masses and the internal parameters of the
two coalescing ones. Thus, collection is represented in
1 space by the extinction of two points and the creation
of one.

Our first problem is to write an equation expressing
the change in the number of points in a small volume of

f space.
4. The growth equation

Under the action of drifting alone, the number of
points in f space is conserved. Therefore, the change in
f due to drifting is given by the continuity equation with
the divergence taken over all dimensions of f space;
thus,

at Jx

The change in f due to collection is given by two in-
tegral expressions, one accounting for the rate of in-
crease of points and the other accounting for the rate
of decrease of points. We shall designate these integrals
by I gain and I1oss, respectively. The total rate of change
of f, then is the sum of that due to drifting and that due
to creation and extinction of points, ie.,
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The total derivatives in %, y and Z (given by the dot
over the parameters) must be found from auxiliary
equations which include the effect of the environment.
Using E to indicate all the effects of the environment of
the particles, we write equations for the change in mass,
type and position of the particles in the form
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When the collection kernel V of I zgin and 1., is given
as a function of the same parameters, then the growth
equation is completely specified.

5. The environment

Some properties of the environment change due to
interaction with the particles. Let us take as an example
the vapor pressure.

The “complete” density function over water mass
must include the molecular water vapor as well as the
water in the droplets. The mass % of the moleculeis
the lower limit. It would be very inconvenient, how-
ever, to include molecular sized particles in our droplet
density function so we divide the distribution into
two size groups by somewhat arbitrarily assigning the
boundary w, Mass agglomerations >xo are called
droplets; those <o are assigned to the vapor pressure
(Fig. 3). Even though the interaction between sizes
smaller and larger than x, is fundamentally one of.
collection, we call it condensation.

In order to derive an expression for the change in the
water vapor mass ¢(z) we let
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upon integration by parts. Thus, the rate of change in
vapor mass is the divergence of its flux minus the rate
of condensation on local particles.

In Lagrangian formulation we have

p ol fon e e
= f 0 dx-/; v, ©)

This is an interface equation. We must also write one
for heat exchange between the particles and the en-
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vironment. The particular interface equations can be
written to suit the particular problem so we will not
discuss them further.

6. Discussion of the growth equation

The similarity of (3) to the Boltzmann transport
equation is striking; yet, there are some important
differences. First, f is not a function of velocity, but it
is of mass and type of particles. This has important
consequences.

For convenience, we let X represent all coordinates in
f space. Then (2) may be written as

af J
(2) +—ummo, (7a)
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or, equivalently, in terms of the total derivative,
df X
(2) +i-o (7)
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In Hamiltonian mechanics the X is composed of
matched pairs of position and momentum coordinates,
and the application of the canonical equations leads to
the vanishing of the last term in (7b). The total deriva-
tive of fis then zero, meaning that the density of points
in the vicinity of any given point is constant (Liou-
ville’s theorem).

But in our case the second term does not in general
vanish and so the density of points near a given point
may change. There are no canonical equations to guide
the trajectories of the points, and the velocities of the
points may vary in space in a manner general enough to
allow gathering or dispersion of points. So the second
difference is that the Liouville theorem does not apply
to f space (Fig. 4).

If we include the internal parameters that add to give
the new values upon coalescence, then the collection
integrals may be written:
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Fic. 3. Division of particle distribution into two size groups.
Masses > x, are called droplets; those <, are assigned to the vapor
pressure, The interaction is condensation.
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Fi6. 4. Gathering and dispersion of points in f space.
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where the primed variables are the parameters of the
particle being captured. [A derivation is given in
Berry (1965).]

Two intuitive conservation laws can be demon-
strated ; namely, that under drifting alone the number
of points in f space is conserved, and under collection
alone the mass of particles is conserved. However, there
seem to be no general conservation laws for the com-
bined effects of condensation and collection, and the
collection integrals cannot be combined because their
limits differ.

7. Summary

A mathematical framework is provided in which the
variety of changes in cloud particles can be organized
in a cloud model.
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